Mask R-CNN

Mask R-CNN

Mask R-CNN[1] is a framework for object instance segmentation, which adds a branch for predicting an object mask in parallel with the existing branch for bounding box recognition of Faster R-CNN. There are some details of reading and implementing it.

Contents


Paper & Code & note


Paper: Mask R-CNN(ICCV 2017 paper)
Code: Pytorch
Note: Mendeley

Paper


Abstract

Mask R-CNN_Abstract.png

  1. It is a framework for object instance segmentation.
  2. It extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.
  3. It challenges instance segmentation, bounding-box object detection, and person keypoint detection.
  4. It serves as a solid baseline in instance-level recognition.

Problem Description

Mask R-CNN_PD.png

Problem Solution

Mask R-CNN_PS.png

Conceptual Understanding

Mask R-CNN_framework.png

Core Conception

Loss

Mask R-CNN_Loss.png

Mask

Mask R-CNN_mask.png
Mask R-CNN_Head.png

RoIAlign

Mask R-CNN_RoIAlign.png
Mask R-CNN_RoIAlign-details.png

Experiments

Mask R-CNN_results.png
Mask R-CNN_Ablations.png
Mask R-CNN_AP.png

Code


The complete code can be found in detectron2[2].

Note


More details of Mask R-CNN and its extends like RoIAlign, bilinear interpolation and etc. can be found in [3].

References


[1] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
[2] detectron2. https://github.com/facebookresearch/detectron2
[3] stone. “The amazing Mask R-CNN.” https://zhuanlan.zhihu.com/p/37998710


Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×