LTM

LTM

LTM(Local Transformation Module)[1] focus on the relationship of the local features. It uses linear transformation of the relationship matrix in a high-dimensional metric embedding space to accomplish the transformation. There are some details of reading and implementing it.

Contents


Paper & Code & note


Paper: A New Local Transformation Module for Few-Shot Segmentation(ICMM 2020 paper)
Code: [Code]
Note: Mendeley

Paper


Abstract

LTM_Abstract.png

  1. The key step of few-shot segmentation is to establish the transformation module.
  2. The existing methods form transformation model based on global cues, which however ignores the local cues.
  3. This paper proposes a new transformation module based on local cues,
    relationship matrix with cosine distance to enhance the generalization, generalized inverse matrix to handle the challenging mapping problem.
  4. It outperforms the state-of-the-art method on the PASCAL VOC 2012 dataset.

Problem Description

LTM_PD.png

Problem Solution

LTM_PS.png

Conceptual Understanding

LTM_Pipeline.png

Core Conception

LTM_Transformation.png
LTM_Upsample.png

Transformer

$F^\prime_{s}(i,j)=F_{s}(i,j) \times {G_{s}(i,j)}$
$\hat{F^\prime_{q}}(i,j)=\hat{F_{q}}(i,j) \times {A(i,j)}$
$R_{ij}=\frac{\langle E_{si},E_{qj}\rangle}{||E_{si}|| ||E_{qj}||}$
$R_{truth}=G_{q} \cdot G_{s}$
$R=A \cdot G_{s}$
$A=R \cdot [\left( G_{s} \right)^T \left( G_{s} \left( G_{s} \right)^T \right)^{-1}]$
$\hat{A}=\frac{A-\min{(A)}}{\max{(A)}-\min{(A)}}$

Loss function

$L_{m}=\sum_{i}\sum_{j}-(Y(i,j)\log(M(i,j))+(1-Y(i,j))\log(1-M(i,j)))$
$L_{a}=\sum_{i}\sum_{j}-(Y(i,j)\log(M_{a}(i,j))+(1-Y(i,j))\log(1-M_{a}(i,j)))$
$L_{r}=||R-R_{truth}||_2^2$

$L=\lambda_{m}L_{m}+\lambda_{a}L_{a}+\lambda{r}L_{r}$

Experiments

LTM_Results.png
LTM_Setting.png
LTM_1-shot.png
LTM_5-shot.png
LTM_FB-IoU.png

Code


[Updating]

Note


[Updating]

References


[1] Yang Y, Meng F, Li H, et al. A new local transformation module for few-shot segmentation[C]//International Conference on Multimedia Modeling. Springer, Cham, 2020: 76-87.


  DLFSSLTM

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×