FSL-Survey-2019

FSL-Survey-2019

FSL-Survey[1] is a survey on Few-Shot Learning(FSL), which cotains 166 paper to review Few-Shot Learning. They categorize FSL methods from three perspectives: data, model and algorithm. There are some details of reading it.

Contents


Paper & note


Paper: Generalizing from a Few Examples: A Survey on Few-Shot Learning(CSUR 2019 paper)
Note: Mendeley

Paper


Abstract

FSL_Abstract.png

  1. Starting from a formal definition of FSL, then point out that the core issue in FSL.
  2. Data: which uses prior knowledge to augment the supervised experience.
  3. model: which uses prior knowledge to reduce the size of the hypothesis space.
  4. algorithm: which uses prior knowledge to alter the search for the best hypothesis in the given hypothesis space.
  5. Promising directions are also proposed to provide insights for future research.

Definition

FSL_MLdefinition.png
FSL_FSLdefinition.png
FSL_Minimization.png
FSL_Problem.png

Taxonomy

FSL_Taxonomy.png
FSL_methods.png

Data

FSL_data.png
FSL_DataAugmentation.png

Model

FSL_model.png

Multitask Learning

FSL_ParameterTyping.png
FSL_ParameterSharing.png

Embedding Learning

FSL_EmbeddingLearning.png
FSL_task-invariant.png
FSL_hybrid.png

Learning with External Memory

FSL_memory.png
FSL_MemoryMethods.png

Generative Modeling

FSL_generative.png

Algorithm

FSL_algorithm.png

Refining Existing Parameters

FSL_fine-tune.png
FSL_aggregate.png
FSL_NewParameters.png

Refining Meta-Learned Parameter

FSL_Meta-Learned.png

Learning the Optimizer

FSL_optimizer.png

Meta-learning

FSL_meta-learning.png

Note


Offical Online link can be found in FewShotPapers[2].

References


[1] Wang Y, Yao Q, Kwok J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys (CSUR), 2019.
[2] FewShotPapers. https://github.com/tata1661/FewShotPapers


  DLFSLSurvey

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×