GoogLeNet

GoogLeNet

GoogLeNet[1] is used to classify images with inception v1. There are some details of reading and implementing it.

Contents


Paper & Code & note


Paper: Going deeper with convolutions(CVPR 2015 paper)
Code: PyTorch
Note: GoogLeNet

Paper


Abstract

googlenet_Abstract.png
As abstract of the paper, their work mainly proposed a CNN architecture codenamed Inception, so that to build a inception-based network with 22 layers called GoogLeNet for classification and detection.

  1. bulid Inception architecture based on the Hebbian principle and the intuition of multi-scale processing.
  2. It increased the depth and width of the network while keeping the computational budget constant.

Problem Description

googlenet_PD.png

It shows the purpose of GoogLenet and the drawbacks of exsiting methods about solving this problem.

Problem Solution

googlenet_PS.png

It proposal a network architecture named Inception, including what it can do and how it works.

Conceptual Understanding

googlenet_CU.png

It describes two version of architecture of Inception, including naive version and inception_v1.

Core Conception

googlenet_CC.png

It denotes the most important conception of Inception mudules, and it explains convolution on multiple scales to extract features, and using spare matrix to accelerate convergence speed with a instance.

Besides, the network architecture shows below.
googlenet_network.jpg
googlenet_incarnation.png

Code

The complete code can be found in here.

Details of implementation

the whole network architecture:
googlenet_Doi.png
the details of googlenet:
googlenet_details.jpg
the step of implementation:
googlenet_code.png

It includes the whole network architeture and the implementation of auxiliary classfier.

Inception

class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class Inception(nn.Module):

def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__()

self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
)

self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
)

self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
)

def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)

outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)

Auxiliary classifer

class InceptionAux(nn.Module):

def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1)

self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)

def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = F.adaptive_avg_pool2d(x, (4, 4))
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = torch.flatten(x, 1)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
# N x 2048
x = F.dropout(x, 0.7, training=self.training)
# N x 2048
x = self.fc2(x)
# N x 1024

return x

GoogLeNet

class GoogLeNet(nn.Module):

def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input

self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(1024, num_classes)

if init_weights:
self._initialize_weights()

def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
import scipy.stats as stats
X = stats.truncnorm(-2, 2, scale=0.01)
values = torch.as_tensor(
X.rvs(m.weight.numel()), dtype=m.weight.dtype)
values = values.view(m.weight.size())
with torch.no_grad():
m.weight.copy_(values)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * \
(0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * \
(0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * \
(0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)

# N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x)

# N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits:
aux1 = self.aux1(x)

x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits:
aux2 = self.aux2(x)

x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7

x = self.avgpool(x)
# N x 1024 x 1 x 1
x = torch.flatten(x, 1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return _GoogLeNetOutputs(x, aux2, aux1)
return x

Note


More details of Inception about implementation can be found in [2].
More details of conception about multi-scale and spare matrix can be found in [3].

References


[1] Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
[2] Bing Xue. “Big word about CNN classic model.” https://my.oschina.net/u/876354/blog/1637819.
[3] Lei Zhang. “Deep understanding GoogLeNet architecture.” https://zhuanlan.zhihu.com/p/32702031.


Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×